V = Ultimate-L and the Ultrapower Axiom

W. Hugh Woodin

Harvard University

Slaman70 Berkeley October 11, 2024

Beyond the basic axioms: large cardinal axioms

Sharpening the conception of V

- The ZFC axioms are naturally augmented by additional axioms which assert the existence of "very large" infinite sets.
 - Such axioms assert the existence of large cardinals.

These large cardinals include:

- Measurable cardinals
- Strong cardinals
- Woodin cardinals
- Superstrong cardinals
- Supercompact cardinals
- Extendible cardinals
- Huge cardinals
- ω-huge cardinals
- Axiom I₀ cardinals

Supercompact cardinals

Suppose $\kappa < \lambda$ are uncountable cardinals.

$$\blacktriangleright \mathcal{P}_{\kappa}(\lambda) = \{ \sigma \subset \lambda \mid |\sigma| < \kappa \}.$$

Suppose U is an ultrafilter on I where $I = \mathcal{P}_{\kappa}(\lambda)$.

- U is κ-complete if U is closed under intersections of cardinality less that κ.
- *U* is fine if for all $\alpha < \lambda$, $\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in \sigma\} \in U$.
- *U* is **normal** if for all $F : \mathcal{P}_{\kappa}(\lambda) \to \lambda$, if

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid F(\sigma) \in \sigma\} \in U$$

then there exists $X \in U$ such that $F \upharpoonright X$ is constant.

Definition (Reinhardt, Solovay: 1967)

Suppose κ is an uncountable cardinal.

Then κ is supercompact if for all λ > κ there is a κ-complete normal fine ultrafilter U on P_κ(λ).

Strongly compact cardinals

Definition (Keisler-Tarski:1963)

Suppose that κ is an uncountable regular cardinal. Then κ is a **strongly compact cardinal** if for each $\lambda > \kappa$ there exists an ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ such that:

- 1. U is a κ -complete ultrafilter,
- 2. U is a fine ultrafilter.
- One is just dropping the normality requirement.

Theorem (Menas:1976)

Suppose κ is a measurable cardinal and that κ is a limit of strongly compact cardinals.

- Then κ is a strongly compact cardinal.
- Every supercompact cardinal is a strongly compact cardinal.
- ▶ The Menas Theorem shows the converse can naturally fail:
 - The least measurable cardinal which is a limit of supercompact cardinals is **not** a supercompact cardinal.

Solovay's conjecture

Conjecture (Solovay)

The following are equiconsistent.

- 1. ZFC + "There is a supercompact cardinal".
- 2. ZFC + "There is a strongly compact cardinal".
- This is one of the central problems of the Inner Model Program.

The Menas Theorem leaves open the possibility that the following might be equivalent.

- 1. There is a supercompact cardinal.
- 2. There is a strongly compact cardinal.

The Identity Crisis Theorem of Magidor

Lemma

Suppose that κ is a supercompact cardinal. Then

 \blacktriangleright κ is a limit of measurable cardinals.

Theorem (Magidor:1976)

Suppose κ is a strongly compact cardinal. Then there is a (class) generic extension of V in which:

- κ is a strongly compact cardinal.
- \blacktriangleright κ is the **only** measurable cardinal.

As a consequence:

Solovay's Conjecture looks extremely difficult to solve.

Conjecture (Magidor)

The following are not equiconsistent.

- 1. $\rm ZFC+$ "There is a supercompact cardinal".
- 2. ZFC + "There is a strongly compact cardinal".

Close embeddings and finitely generated models

Definition

Suppose that M, N are transitive sets, $M \models \text{ZFC}$, and that

$$\pi: M \to N$$

is an elementary embedding. Then π is **close** to M if for each $X \in M$ and each $a \in \pi(X)$,

$$\{Z \in \mathcal{P}(X) \cap M \mid a \in \pi(Z)\} \in M.$$

Definition

Suppose that N is a transitive set such that

$$N \models \text{ZFC} + "V = \text{HOD}".$$

Then *N* is **finitely generated** if there exists $a \in N$ such that every element of *N* is definable in *N* from *a*.

Why close embeddings?

Lemma

Suppose that M is a transitive set,

```
M \models \text{ZFC} + "V = \text{HOD}",
```

and that M is finitely generated.

Suppose that N is a transitive set and

$$\blacktriangleright \pi_0: M \to N$$

•
$$\pi_1: M \to N$$

are elementary embeddings each of which is close to M.

• Then
$$\pi_0 = \pi_1$$
.

• Without the requirement of closeness, the conclusion that $\pi_0 = \pi_1$ can fail.

Weak Comparison

Definition

Suppose that V = HOD. Then **Weak Comparison** holds if for all $X, Y \prec_{\Sigma_2} V$ the following hold where M_X is the transitive collapse of X and M_Y is the transitive collapse of Y.

Suppose that M_X and M_Y are finitely generated models of ZFC, $M_X \neq M_Y$, and

 $\blacktriangleright M_X \cap \mathbb{R} = M_Y \cap \mathbb{R}.$

Then there exists a transitive set M* and elementary embeddings

$$\blacktriangleright \pi_X: M_X \to M^*$$

$$\blacktriangleright \pi_Y: M_Y \to M^*$$

such that π_X is close to M_X and π_Y is close to M_Y .

- Weak Comparison holds in all the inner models which have been constructed in the Inner Model Program.
 - It is a simple consequence of the incredible structure these models have.

Goldberg's Ultrapower Axiom

Notation

Suppose that $N \models \text{ZFC}$ is an inner model of ZFC, $U \in N$ and $N \models "U$ is a countable complete ultrafilter"

- ▶ N_U denotes the transitive collapse of $Ult_0(N, U)$
- ▶ $j_U^N : N \to N_U$ denotes the associated ultrapower embedding.

Definition (The Ultrapower Axiom)

Suppose that U and W are countably complete ultrafilters. Then there exist $W^* \in V_U$ and $U^* \in V_W$ such that the following hold.

- (1) $V_U \models "W^*$ is a countable complete ultrafilter".
- (2) $V_W \models "U^*$ is a countable complete ultrafilter".
- (3) $(V_U)_{W^*} = (V_W)_{U^*}$.

(4)
$$j_{W^*}^{V_U} \circ j_U^V = j_{U^*}^{V_W} \circ j_W^V.$$

• If
$$V = HOD$$
 then (3) implies (4).

Weak Comparison and the Ultrapower Axiom

- The Ultrapower Axiom simply asserts that amalgamation holds for the ultrapowers of V by countably complete ultrafilters.
- If there are no measurable cardinals then the Ultrapower Axiom holds trivially
 - since every countably complete ultrafilter is principal.

Theorem (Goldberg)

Suppose that V = HOD and that there exists

 $X \prec_{\Sigma_2} V$

such that $M_X \models \text{ZFC}$ where M_X is the transitive collapse of X. Suppose that Weak Comparison holds.

► Then the Ultrapower Axiom holds.

If X does not exist then Weak Comparison holds vacuously.
 Assuming large cardinals exist then X must exist.

Assuming large cardinals exist then X must exist.

The Ultrapower Axiom and strongly compact cardinals

Theorem (Goldberg)

Assume the Ultrapower Axiom and that for some κ :

- κ is a strongly compact cardinal.
- κ is not a supercompact cardinal.

Then κ is a measurable limit of supercompact cardinals.

- ▶ The Ultrapower Axiom resolves the "identity crisis".
 - By the Menas Theorem, this resolution is best possible.

Corollary (Goldberg)

The following are equiconsistent, and in fact equivalent.

- 1. $\rm ZFC + \rm UA +$ "There is a supercompact cardinal".
- 2. $\rm ZFC + UA +$ "There is a strongly compact cardinal".

The power of the Ultrapower Axiom

Theorem (Goldberg)

Assume the Ultrapower Axiom and that κ is supercompact. Then

- Suppose $A \subset \kappa$ codes V_{κ} . Then $V = HOD_A$.
 - ► V is a generic extension of HOD.

• GCH holds at all cardinals $\gamma \geq \kappa$.

Theorem (Goldberg)

Assume the Ultrapower Axiom. Then the following are equivalent.

- 1. There is a supercompact cardinal.
- 2. There is a cardinal κ such that for all λ , there is a countably complete ultrafilter U such that $j_U(\kappa) > \lambda$ where

$$j_U: V \to M_U$$

is the ultrapower embedding.

Descriptive Set Theory: Prewellorderings and scales

Definition (ZF)

A preorder \leq on $A \subseteq \mathbb{R}$ is a **prewellordering** if every nonempty subset of A has a \leq -least element.

A prewellorder on A is simply an equivalence relation on A together with a wellordering of the equivalence classes.

Definition (ZF)

(Moschovakis:1971) Suppose $A \subseteq \mathbb{R}$. A scale on A is a sequence $\langle \leq_i : i < \omega \rangle$

of prewellorderings on A such that the following hold.

- 1. For all $x, y \in A$, for all $i < \omega$, if $x \leq_{i+1} y$ then $x \leq_i y$.
- 2. Suppose $\langle \sigma_k : k < \omega \rangle$ is an infinite sequence of nonempty subsets of *A*, with limit $x \in \mathbb{R}$, such that

For all $i < \omega$, $y \sim_i z$ for all $y, z \in \bigcup_{k > i} \sigma_k$.

Then $x \in A$ and for all $i < \omega$, $x \leq_i y$ for all $y \in \bigcup_{k > i} \sigma_k$.

Beyond the Borel sets: The Universally Baire sets

Definition (Feng-Magidor-Woodin:1991)

A set $A \subseteq \mathbb{R}$ is **universally Baire** if:

- For all topological spaces Ω
- For all continuous functions $\pi: \Omega \to \mathbb{R}$;

the preimage of A by π has the property of Baire in the space Ω .

Every Borel set is universally Baire.

Lemma

Suppose $A \subseteq \mathbb{R}$ is universally Baire. Then A is Lebesgue measurable and has the property of Baire.

It is consistent with ZFC that every set A ⊆ ℝ is the image of a universally Baire set by a continuous function f : ℝ → ℝ.

For example, this holds if V = L.

The influence of large cardinals

► Universally Baire subsets of ℝ × ℝ are defined in exactly the same way as the universally Baire subsets of ℝ.

Theorem

Assume there is a proper class of Woodin cardinals. Then the following hold.

- 1. (Woodin) Suppose A is universally Baire. Then
 - Every set $B \in \mathcal{P}(\mathbb{R}) \cap L(A, \mathbb{R})$ is universally Baire.
- 2. (Steel) Suppose A is universally Baire. Then

A has a universally Baire scale.

3. (Martin, Steel) Suppose A is universally Baire. Then

A is determined.

Transfinite Borel sets

$^{\infty}$ Borel Codes

- ▶ All increasing pairs of rational numbers, are ∞ -Borel codes.
- ▶ If S is an ∞ -Borel code then (0, S) is an ∞ -Borel code.
- A transfinite sequence, (S_α : α < η), is an [∞]-Borel code if S_α is an [∞]-Borel code for all α < η.

The interpretation of an $^\infty$ Borel Code S as a set $A_S\subseteq\mathbb{R}$

- ▶ If $S \in \mathbb{Q} \times \mathbb{Q}$ then A_S is the interval [r, s]
- If S = (0, T) then $A_S = \mathbb{R} \setminus A_T$.
- ▶ If $S = \langle S_{\alpha} : \alpha < \eta \rangle$ then $A_S = \bigcup_{\alpha < \eta} A_{S_{\alpha}}$.

▶ A set $X \subseteq \mathbb{R}$ is [∞]-Borel if $X = A_S$ for some [∞]-Borel code, *S*.

 $^\infty$ Borel sets without the Axiom of Choice

▶ Assuming the Axiom of Choice, every set $X \subseteq \mathbb{R}$ is [∞]Borel.

• One cannot prove in ZF that even all the Σ_3^1 -sets are $^{\infty}\mathrm{Borel}$.

Lemma (ZF)

Suppose $A \subseteq \mathbb{R}$ and there is a scale on A.

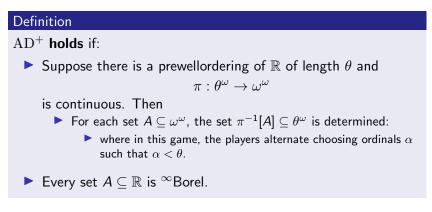
► Then A is [∞] Borel.

Lemma (ZF)

Assume $A \subseteq \mathbb{R}$ is $^{\infty}$ Borel and that there is no uncountable set $X \subseteq \mathbb{R}$ such that X can be wellordered.

Then A is Lebesgue measurable and has the property of Baire.

A technical refinement of AD



 \triangleright AD⁺ implies AD

• Just use the identity function $\pi: \omega^{\omega} \to \omega^{\omega}$.

▶ (Conjecture) AD implies AD⁺.

The universally Baire sets and AD^+

Lemma (Solovay)

Suppose $A \subseteq \mathbb{R}$. Then the following are equivalent.

- 1. There is a wellordering of \mathbb{R} in $L(A, \mathbb{R})$.
- 2. For every set $B \subseteq \mathbb{R}$, if $B \in L(A, \mathbb{R})$ then B has a scale in $L(A, \mathbb{R})$.
- The equivalence fails if one just requires that B is [∞]Borel in L(A, ℝ), for all B ⊆ ℝ.

Theorem

Suppose that there is a proper class of Woodin cardinals and that $A \subseteq \mathbb{R}$ is universally Baire. Then

 $L(A,\mathbb{R})\models \mathrm{AD}^+.$

• $L(\mathbb{R}) \models AD$ if and only if $L(\mathbb{R}) \models AD^+$.

HOD in AD^+ models

The first connection of AD with large cardinals:

Theorem (Solovay)

Suppose $A \subseteq \mathbb{R}$ and that $L(A, \mathbb{R}) \models AD$. Then ω_1 is a measurable cardinal in $HOD^{L(A,\mathbb{R})}$.

Theorem

Suppose $A \subseteq \mathbb{R}$ and that $L(A, \mathbb{R}) \models AD$. Let

 ⊖^{L(A,ℝ)} be the supremum of the lengths of all prewellorderings of ℝ which belong to L(A, ℝ).

Then $\Theta^{L(A,\mathbb{R})}$ is a Woodin cardinal in $HOD^{L(A,\mathbb{R})}$.

Theorem

Suppose $A \subseteq \mathbb{R}$ and that $L(A, \mathbb{R}) \models AD^+$. Then ω_1 is the least measurable cardinal in $HOD^{L(A,\mathbb{R})}$.

This motivates the natural conjecture that if $L(A, \mathbb{R}) \models AD^+$ then $\blacktriangleright HOD^{L(A,\mathbb{R})}$ is a "canonical model".

The Inner Model Program

Theorem (Scott:1961)

Assume V = L. Then there are no measurable cardinals.

- The Inner Model Program seeks to construct enlargements of L in which large cardinals can exist.
 - These enlargements are **core models**.
 - The stronger the large cardinal notion the harder the problem.

A remarkable convergence and a surprise (1988-96)

Assume $AD^{L(\mathbb{R})}$ and let Θ be the supremum of the lengths of the prewellorderings in $L(\mathbb{R})$.

- (Steel) $\operatorname{HOD}^{L(\mathbb{R})} \cap V_{\Theta}$ is a core model.
- (Woodin) $HOD^{L(\mathbb{R})}$ is **not** a core model,
 - it is a strategic-core model.

A new class of enlargements of L is naturally revealed by AD⁺
 strategic-core models.

The axiom V = Ultimate-L

The axiom for V = Ultimate-L

- There is a proper class of Woodin cardinals.
- For each Σ₂-sentence φ, if φ holds in V then there is a universally Baire set A ⊆ ℝ such that

 $\operatorname{HOD}^{L(A,\mathbb{R})}\models\varphi.$

Theorem

Assume V = Ultimate-L. Then the following hold.

- **1**. CH.
- 2. V = HOD.
- 3. V is not a generic extension of any inner model.

Scales and Suslin cardinals

Definition

Suppose $A \subseteq \mathbb{R}$ and λ is an infinite cardinal. Then A is λ -**Suslin** if there is a scale on A with associated prewellorderings of length at most λ .

Definition

Suppose λ is an infinite cardinal. Then λ is a **Suslin cardinal** if there exists a set $A \subseteq \mathbb{R}$ such that

- A is λ-Suslin.
- A is not γ -Suslin for any $\gamma < \lambda$.

• (ZF)
$$\omega$$
 and ω_1 are Suslin cardinals.

AD^+ and Suslin cardinals

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD$. Then the following are equivalent.

- 1. $L(A, \mathbb{R}) \models AD^+$.
- 2. $L(A, \mathbb{R}) \models$ "There is a largest Suslin cardinal".
- ► This theorem is one of the many equivalences of AD⁺ in the context of AD, which have emerged over that last 30 years.

The largest Suslin cardinal in $L(A, \mathbb{R})$

Notation

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then

•
$$\delta_A$$
 is the largest Suslin cardinal of $L(A, \mathbb{R})$.

$$\blacktriangleright \Theta_A = \Theta^{L(A,\mathbb{R})}.$$

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then

•
$$\delta_A$$
 is strongly inaccessible in HOD^{L(A, \mathbb{R})}

$$\blacktriangleright \operatorname{HOD}^{L(A,\mathbb{R})} \upharpoonright \delta_{A} \prec_{\Sigma_{2}} \operatorname{HOD}^{L(A,\mathbb{R})} \upharpoonright \Theta_{A}.$$

More notation

$$\blacktriangleright H_A = \mathrm{HOD}^{L(A,\mathbb{R})} \upharpoonright \delta_A$$

$$\blacktriangleright H_A \models \text{ZFC}.$$

LSA models

Definition

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then $L(A, \mathbb{R})$ is an **LSA model** if for all $\gamma < \delta_A$, if

$$\pi:\mathcal{P}(\gamma)\cap L(A,\mathbb{R})\to \delta_A$$

is a function such that $\pi \in L(A, \mathbb{R})$ and such that π is OD in $L(A, \mathbb{R})$, then the range of π is bounded.

Theorem

Suppose that $A \subseteq \mathbb{R}$, $L(A, \mathbb{R}) \models AD^+$, and that $L(A, \mathbb{R})$ is an LSA model. Then

$$H_A \models \text{ZFC} + "V = \text{HOD"}$$

It is conjectured that one can drop the requirement that L(A, ℝ) be an LSA model.

LSA models and the Ultrapower Axiom

Theorem

Suppose that $A \subseteq \mathbb{R}$, $L(A, \mathbb{R}) \models AD^+$, and that $L(A, \mathbb{R})$ is an LSA model. Then

 $H_A \models \text{ZFC} + \text{Weak Comparison.}$

- The proof uses the theory of iteration trees from the Inner Model Program.
- Thus by Goldberg's Theorem:

Theorem

Suppose that $A \subseteq \mathbb{R}$, $L(A, \mathbb{R}) \models AD^+$, and that $L(A, \mathbb{R})$ is an LSA model. Then

 $H_A \models \text{ZFC} + \text{Ultrapower Axiom}.$

```
• But what about HOD^{L(A,\mathbb{R})}?
```

H_A versus $\mathrm{HOD}^{L(A,\mathbb{R})} \upharpoonright \Theta_A$

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models \mathrm{AD}^+$. Then

$$\blacktriangleright (H_A =) \operatorname{HOD}^{L(A,\mathbb{R})} \upharpoonright \delta_A \prec_{\Sigma_2} \operatorname{HOD}^{L(A,\mathbb{R})} \upharpoonright \Theta_A.$$

As a corollary, using Goldberg's analysis of the Ultrapower Axiom:

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then the following are equivalent.

- 1. $H_A \models$ Ultrapower Axiom.
- 2. HOD^{$L(A,\mathbb{R})$} \models Ultrapower Axiom.

Theorem

Suppose that $A \subseteq \mathbb{R}$, $L(A, \mathbb{R}) \models AD^+$, and that $L(A, \mathbb{R})$ is an LSA model. Then

 $\operatorname{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} \models \operatorname{Ultrapower} \operatorname{Axiom}.$

The general case

Notation

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$.

• T_A denotes the Σ_1 -theory of $L(A, \mathbb{R})$ with parameters from $\delta_A \cup \{\mathbb{R}\}.$

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then (in the language of Set Theory with an additional predicate)

$$\blacktriangleright (H_A, T_A) \models \text{ZFC} + "V = \text{HOD"}$$

$$\blacktriangleright (H_A, T_A) \models \text{ZFC} + \text{Weak Comparison}.$$

Theorem

Suppose that
$$A \subseteq \mathbb{R}$$
 and $L(A, \mathbb{R}) \models AD^+$. Then

 $HOD^{L(A,\mathbb{R})} \models ZFC + Ultrapower Axiom.$

▶ The proof uses the theory of homogeneous trees from AD⁺.

V = Ultimate-L and the Ultrapower Axiom

Theorem (Goldberg)

The following are equivalent.

1. Ultrapower Axiom.

2. For all
$$\gamma > \omega$$
, if $\gamma = |V_{\gamma}|$ then
 $V_{\gamma} \models \text{Ultrapower Axiom}.$

- \blacktriangleright Thus the negation of $\operatorname{Ultrapower}\,\operatorname{Axiom}\,$ is expressible by a $\Sigma_2\text{-sentence}$
 - which cannot reflect into $HOD^{L(A,\mathbb{R})}$.

Theorem

Assume V =Ultimate-L. Then the Ultrapower Axiom holds.

Another application of the machinery for the general case

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Suppose that

 $\operatorname{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} \models "U$ is a countably complete ultrafilter".

Then there exists $W \in L(A, \mathbb{R})$ such that

- ▶ $L(A, \mathbb{R}) \models$ "W is a countably complete ultrafilter".
- $\blacktriangleright U = W \cap \mathrm{HOD}^{L(A,\mathbb{R})}.$
- The conclusion is equivalent to U is countably complete in V:
 If X ⊂ U is countable then ∩X ≠ Ø.
- This proves the HOD-Ultrafilter Conjecture.

Large cardinals in HOD

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Suppose that $\lambda < \Theta_A$ and λ is an uncountable cardinal in $L(A, \mathbb{R})$.

Let S be the set of $\kappa < \lambda$ such that

•
$$\operatorname{cof}(\kappa) = \omega$$
,

• κ is strongly inaccessible in HOD^{L(A, \mathbb{R})}.

Then S is cofinal in λ .

Theorem

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Suppose that $\kappa < \lambda$ and that λ is a cardinal in $L(A, \mathbb{R})$. Then

 $\text{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} \models ``\kappa \text{ is not } \gamma \text{-strongly compact for all } \gamma < \lambda".$

Thus:

 $\operatorname{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} | \Theta_{\mathcal{A}} \models$ "There are no strongly compact cardinals".

A deeper connection?

Definition (Hamkins)

- 1. An inner model N is a **ground** if V = N[G].
- 2. The **mantle** of V is the intersection of all the grounds of V.
- 3. **Ground Axiom**: The only ground of V is V.

Theorem (Usuba)

Suppose there is an extendible cardinal and that \mathbb{M} is the mantle of V. Then \mathbb{M} is a ground of V.

Mantle Conjecture

Assume there is an extendible cardinal and that

 $V \models$ Ultrapower Axiom.

Then $\mathbb{M} \models "V = \text{Ultimate-}L"$.

- The Mantle Conjecture implies (assuming there is an extendible cardinal) that the axiom V = Ultimate-L is equivalent to:
 - ▶ Ultrapower Axiom + Ground Axiom.

The Ultimate-L Program

One central goal of the Ultimate-L Program is to prove the following conjecture.

 This would also likely achieve many of the current goals of the Inner Model Program.

Conjecture

Suppose that $A \subseteq \mathbb{R}$ and $L(A, \mathbb{R}) \models AD^+$. Then

```
• HOD^{L(A,\mathbb{R})} is a strategic-core model.
```

The theorem that

 $\mathrm{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} \models \mathrm{Ultrapower} \ \mathrm{Axiom}$

confirms that Goldberg's Ultrapower Axiom will play a key role in the Ultimate-*L* Program.

My earliest collaboration with Ted

