The topological α -game metatheorem

Antonio Montalbán, in joint work with Andrew Marks

U.C. Berkeley

October 2024 Computability and Mathematical Definability Celebrating the Seventieth Birthday of Theodore Slaman

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel] For every Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to F.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel] For every Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to F.

where

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel]

For every Borel function $F \colon \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to F.

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.
- F continuously reduces to G if \exists continuous φ, ψ such that $F = \psi \circ G \circ \varphi$.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel]

For every Borel function $F \colon \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to *F*.

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.
- F continuously reduces to G if \exists continuous φ, ψ such that $F = \psi \circ G \circ \varphi$.
- F is Baire-class-1 if it is the pointwise limit of continuous functions.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel]

For every Borel function $F \colon \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to F.

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.
- F continuously reduces to G if \exists continuous φ, ψ such that $F = \psi \circ G \circ \varphi$.
- F is Baire-class-1 if it is the pointwise limit of continuous functions.
- F is Baire-class- β if the pre-image of every open set is $\Sigma_{\beta+1}$.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel]

For every Borel function $F \colon \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to F.

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.
- F continuously reduces to G if \exists continuous φ, ψ such that $F = \psi \circ G \circ \varphi$.
- F is Baire-class-1 if it is the pointwise limit of continuous functions.
- F is Baire-class- β if the pre-image of every open set is $\Sigma_{\beta+1}$.

Thm: [Solecki 98 for Δ_2^0] [Zapletal 04 for Borel]

For every Borel function $F \colon \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise continuous;
- Every Baire-class-1 function continuously reduces to *F*.

where

- F is piecewise continuous if $F = \bigcup_{n \in \omega} F_n$ where F_n it partial continuous.
- F continuously reduces to G if \exists continuous φ, ψ such that $F = \psi \circ G \circ \varphi$.
- F is Baire-class-1 if it is the pointwise limit of continuous functions.
- F is Baire-class- β if the pre-image of every open set is $\Sigma_{\beta+1}$.

Theorem: [Marks, Montalbán]

For every ordinal β and Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise Baire-class- β .
- Every Baire-class- $(\beta + 1)$ function continuously reduces to F.

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

• The pre-image under F of every Σ_2^0 set is Σ_2^0 .

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ_2^0 set is Σ_2^0 .
- F is piecewise continuous on closed domains,

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ⁰₂ set is Σ⁰₂.
- F is piecewise continuous on closed domains,

Solecki's 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ⁰₂ set is Σ⁰₂.
- F is piecewise continuous on closed domains,

Solecki's 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Ding, Kihara, Semmes, Zhao 20] For every Borel function F, TFAE:

• The pre-image under F of every Σ_3^0 set is Σ_3^0 .

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ⁰₂ set is Σ⁰₂.
- F is piecewise continuous on closed domains,

Solecki's 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Ding, Kihara, Semmes, Zhao 20] For every Borel function F, TFAE:

- The pre-image under F of every Σ_3^0 set is Σ_3^0 .
- F is piecewise continuous on Π_2^0 domains,

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ_2^0 set is Σ_2^0 .
- F is piecewise continuous on closed domains,

Solecki's 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Ding, Kihara, Semmes, Zhao 20] For every Borel function F, TFAE:

- The pre-image under F of every Σ_3^0 set is Σ_3^0 .
- F is piecewise continuous on Π_2^0 domains,

Day and Marks announced a proof for Σ_n^0 for all $n \in \omega$ using analytic determinacy.

Thm: [Jayne, Rogers, 82] For every Borel function F, TFAE:

- The pre-image under F of every Σ_2^0 set is Σ_2^0 .
- F is piecewise continuous on closed domains,

Solecki's 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Ding, Kihara, Semmes, Zhao 20] For every Borel function F, TFAE:

- The pre-image under F of every Σ⁰₃ set is Σ⁰₃.
- F is piecewise continuous on Π_2^0 domains,

Day and Marks announced a proof for Σ_n^0 for all $n \in \omega$ using analytic determinacy.

Theorem: [Marks, Montalbán – work in progress] For every ordinal β and every Borel function F, TFAE:

- The pre-image under F of every $\Sigma_{\beta+1}^0$ set is $\Sigma_{\beta+1}^0$.
- F is piecewise continuous on Π^0_β domains,

Summary

- Applications
- **2** The statement of the topological α -game metatheorem
- O An example: Wadge's theorem
- The predecessor: the game metatheorem for structures
- **(5)** The general version: using α -topology
- The key-ingredient in the proof: α -true stages

 ${\mathcal X}$ is a polish space,

A is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and

 \mathbb{A}_{α} is the collection of Π^0_{α} sets with hyp parameters

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns.

 \mathcal{X} is a polish space, A is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and A_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} \colon \omega^{<\omega} \to \mathbb{A}$

The extender builds a map $\tau \mapsto B_{\tau} \colon \omega^{<\omega} \to \mathbb{A}_{\alpha}$

 \mathcal{X} is a polish space, A is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and A_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} \colon \omega^{<\omega} \to \mathbb{A}$

The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$

 \mathcal{X} is a polish space, A is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and A_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} \colon \omega^{<\omega} \to \mathbb{A}$

The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

 \mathcal{X} is a polish space, A is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and A_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

Theorem: [Marks, Montalbán]

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters, and $\mathbb{A}_{\leq \alpha} = \bigcup_{\zeta \leq \alpha} \mathbb{A}_{\zeta}$

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p : \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

Theorem: [Marks, Montalbán] There is a left-complete Σ^0_{α} -function $\mathfrak{T}^{\alpha} : \omega^{\omega} \to \omega^{\omega}$ such that, for every strategy for the engineer in the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{<\alpha})$ -game, there is a strategy for the extender so that, $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is total and continuous.

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters, and $\mathbb{A}_{\leq \alpha} = \bigcup_{\zeta \leq \alpha} \mathbb{A}_{\zeta}$

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} \colon \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} \colon \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p \colon \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

Theorem: [Marks, Montalbán] There is a left-complete Σ^0_{α} -function $\mathfrak{T}^{\alpha}: \omega^{\omega} \to \omega^{\omega}$ such that, for every strategy for the engineer in the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{<\alpha})$ -game, there is a strategy for the extender so that, $P \circ \mathfrak{T}^{\alpha}: \omega^{\omega} \to \mathcal{X}$ is total and continuous. where $\mathfrak{T}^{\alpha}: \omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^0_{α} if for every Σ^0_{α} function $F: \omega^{\omega} \to \omega^{\omega}$,

there is a continuous function $G \colon \omega^{\omega} \to \omega^{\omega}$ such that $F = G \circ \mathfrak{I}^{\alpha}$.

 \mathcal{X} is a polish space, \mathbb{A} is the collection of non-empty Σ_1^1 subsets of \mathcal{X} , and \mathbb{A}_{α} is the collection of Π_{α}^0 sets with hyp parameters, and $\mathbb{A}_{\leq \alpha} = \bigcup_{\zeta \leq \alpha} \mathbb{A}_{\zeta}$

Definition: In the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game the engineer and the extender take turns. The engineer builds a map $\tau \mapsto A_{\tau} \colon \omega^{<\omega} \to \mathbb{A}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}.$ The extender builds a map $\tau \mapsto B_{\tau} \colon \omega^{<\omega} \to \mathbb{A}_{\alpha}$ such that $\tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau}$ and $A_{\tau} \cap B_{\tau} \neq \emptyset.$ They end up with: $p \colon \omega^{\omega} \to \mathcal{X}$ where $P(Y) = \bigcap \{B_{\tau} : \tau \subset Y\}.$

 $\begin{array}{l} \text{Theorem: } [\text{Marks, Montalbán] (There is an ordering of the moves } \tau \in \omega^{<\mathbb{N}} \text{ such that...}) \\ \text{There is a left-complete } \Sigma^0_\alpha\text{-function } \mathbb{T}^\alpha \colon \omega^\omega \to \omega^\omega \text{ such that,,} \\ \text{ for every strategy for the engineer in the } (\mathcal{X}, \mathbb{A}, \mathbb{A}_{<\alpha})\text{-game,} \\ \text{ there is a strategy for the extender so that,} \\ P \circ \mathbb{T}^\alpha \colon \omega^\omega \to \mathcal{X} \text{ is total and continuous.} \end{array}$

where $\mathbb{T}^{\alpha} \colon \omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α} if for every Σ^{0}_{α} function $F \colon \omega^{\omega} \to \omega^{\omega}$,

there is a continuous function $G\colon \omega^\omega\to\omega^\omega$ such that $F=G\circ\mathbb{T}^\alpha.$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} \colon (D, D^{c}) \to (M, N)$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.
$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $x \in D \to P(y) \in M$ and $x \notin D \to P(y) \in N$ for $y = \mathfrak{I}^{\alpha}(x)$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $x \in D \to P(y) \in M$ and $x \notin D \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma_{\alpha+1}^{0}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $H(x) = 0^{\omega} \to P(y) \in M$ and $H(x) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma_{\alpha+1}^{0}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $H(x) = 0^{\omega} \to P(y) \in M$ and $H(x) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma_{\alpha+1}^{0}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G : \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{T}^{\alpha}$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^{0}_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G : \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{T}^{\alpha}$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma_{\alpha+1}^{0}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G : \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{T}^{\alpha}$. Extend to $G : \omega^{\leq \omega} \to 2^{\leq \omega}$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathbb{T}^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$.

Let $G \colon \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{T}^{\alpha}$. Extend to $G \colon \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq M$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{I}^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq M$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for
$$\tau \in \omega^{<\omega}$$
, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$

 $A_0 = M$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous. We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{T}^{\alpha}(x)$. Let $H : \omega^{\omega} \to 2^{\omega}$ be a $\Sigma_{\alpha+1}^{0}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$.

Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{T}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for
$$\tau \in \omega^{<\omega}$$
, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$

 $A_0 = M$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F \colon (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \Im^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for $\tau \in \omega^{<\omega}$, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$ $A_0 = M \setminus \bigcup \{ B \in \Pi^0_{\alpha}(HYP) : B \subseteq N^c \}.$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F \colon (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathfrak{I}^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for $\tau \in \omega^{<\omega}$, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$ $A_0 = M \setminus \bigcup \{ B \in \Pi^0_{\alpha}(HYP) : B \subseteq N^c \}. A_0 \neq \emptyset,$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathbb{T}^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for $\tau \in \omega^{<\omega}$, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$ $A_0 = M \setminus \bigcup \{ B \in \Pi^0_{\alpha}(HYP) : B \subseteq N^c \}. A_0 \neq \emptyset, A_0 \text{ is } \Sigma^1_1,$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F \colon (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{I}^{\alpha} : (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{I}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \mathbb{T}^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

 $\begin{array}{l} \text{Engineer's strategy: for } \tau \in \omega^{<\omega} \text{, define } A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases} (\tau^- = \tau \upharpoonright |\tau| - 1) \\ A_0 = M \setminus \bigcup \{ B \in \Pi^0_{\alpha}(HYP) : B \subseteq N^c \} \text{. } A_0 \neq \emptyset \text{, } A_0 \text{ is } \Sigma^1_1 \text{, and } B_{\tau} \cap A_0 \neq \emptyset \rightarrow B_{\tau} \cap N \neq \emptyset \end{cases}$

$$\begin{split} \mathbb{A} &= \Sigma_1^1, \mathbb{A}_{\alpha} = \Pi_{\alpha}^0(HYP), \ \mathfrak{T}^{\alpha+1} : \omega^{\omega} \to \omega^{\omega} \ \text{left-complete} \ \Sigma_{\alpha+1}^0, P : \omega^{\omega} \to \mathcal{X}, \ P(Y) = \bigcap_{\tau \subset Y} B_{\tau} \\ \text{The engineer:} \ \tau \mapsto A_{\tau} : \omega^{<\omega} \to \mathbb{A} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq A_{\tau}. \\ \text{The extender:} \ \tau \mapsto B_{\tau} : \omega^{<\omega} \to \mathbb{A}_{\alpha} \ \text{such that} \ \tau' \subset \tau \implies B_{\tau'} \supseteq B_{\tau} \ \text{and} \ A_{\tau} \cap B_{\tau} \neq \emptyset. \end{split}$$

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. $P \circ \mathfrak{T}^{\alpha} : \omega^{\omega} \to \mathcal{X}$ is continuous.

Theorem: Let M, N be Σ_1^1 disjoint s.t. for no $\Sigma_{\alpha+1}^0$ set $C, M \subseteq C \subseteq N^c$. Then, for every $\Pi_{\alpha+1}^0$ set D, there is a continuous $F: (D, D^c) \to (M, N)$.

Proof: We build a strategy for the engineer such that $P \circ \mathfrak{T}^{\alpha} \colon (D, D^{c}) \to (M, N)$. By metatheorem, the extender can then ensure that $F = P \circ \mathfrak{T}^{\alpha} \colon \omega^{\omega} \to \mathcal{X}$ is continuous.

We want P such that $G(y) = 0^{\omega} \to P(y) \in M$ and $G(y) \neq 0^{\omega} \to P(y) \in N$ for $y = \Upsilon^{\alpha}(x)$.

Let $H: \omega^{\omega} \to 2^{\omega}$ be a $\Sigma^0_{\alpha+1}$ function s.t. $(\forall x \in \omega^{\omega}) \ x \in D \iff H(x) = 0^{\omega}$. Let $G: \omega^{\omega} \to 2^{\omega}$ be continuous such that $H = G \circ \mathfrak{I}^{\alpha}$. Extend to $G: \omega^{\leq \omega} \to 2^{\leq \omega}$.

We want, for $\tau \in \omega^{<\omega}$, $G(\tau) = 0...0 \to A_{\tau} \subseteq A_0$ and $G(\tau) \neq 0...0 \to A_{\tau} \subseteq N$.

Engineer's strategy: for $\tau \in \omega^{<\omega}$, define $A_{\tau} = \begin{cases} B_{\tau^-} \cap A_{\tau^-} & \text{if } G(\tau) = 0...0 \\ B_{\tau^-} \cap N & \text{if } G(\tau) \neq 0...0 \end{cases}$ $(\tau^- = \tau \upharpoonright |\tau| - 1)$ $A_0 = M \setminus \bigcup \{B \in \Pi^0_{\alpha}(HYP) : B \subseteq N^c\}. A_0 \neq \emptyset, A_0 \text{ is } \Sigma^1_1, \text{ and } B_{\tau} \cap A_0 \neq \emptyset \rightarrow B_{\tau} \cap N \neq \emptyset$ (Also take steps on the Gandy-Harrington forcing to make the intersection work out.)

The predecessor: The $\alpha\text{-}\mathsf{game}$ for structures

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions

The predecessor: The $\alpha\text{-}\mathsf{game}$ for structures

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$\left (\mathcal{A}_{i_0}, \bar{a}_0), e_0 \right.$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\overline{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$\left (\mathcal{A}_{i_0}, \bar{a}_0), e_0 \right.$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\overline{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where

 $\mathsf{e} \quad (\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$\left (\mathcal{A}_{i_0}, \bar{a}_0), e_0 \right.$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\bar{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where $(\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

and n_i is the answer to the e_i -th Δ^0_{α} question.

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$(\mathcal{A}_{i_0}, \bar{a}_0), e_0$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\bar{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where $(\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

and n_i is the answer to the e_i -th Δ^0_{α} question.

Atomic diagrams are preserved:

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$(\mathcal{A}_{i_0}, \bar{a}_0), e_0$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\bar{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where $(\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

and n_i is the answer to the e_i -th Δ^0_{α} question.

Atomic diagrams are preserved: $\bigcup_n D_{\mathcal{A}_{i_n}}(\bar{a}_n)$ is diagram of structure.

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$(\mathcal{A}_{i_0}, \bar{a}_0), e_0$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\bar{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where $(\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

and n_i is the answer to the e_i -th Δ^0_{α} question.

Atomic diagrams are preserved: $\bigcup_n D_{\mathcal{A}_{i_n}}(\bar{a}_n)$ is diagram of structure.

Theorem: [M] Given a computable strategy for the engineer, there is a strategy for the extender such that the limit structure is computable.

Fix a list of structures $\{A_i : i \in \omega\}$ with certain effectiveness conditions (α -friendly).

engineer	$(\mathcal{A}_{i_0}, \bar{a}_0), e_0$		$(\mathcal{A}_{i_1}, \bar{a}_1), e_1$		$(\mathcal{A}_{i_2}, \bar{a}_2), e_2$		• • •
extender		\overline{b}_0		\overline{b}_1		\bar{b}_2	• • •
oracle		n_0		n_1		n_2	• • •
	\bar{a}_0	$\subseteq \bar{b}_0$	$\leq_{\alpha} \bar{a}_1$	$\subseteq \bar{b}_1$	$\leq_{\alpha} \bar{a}_2$	$\subseteq \bar{b}_2$	

where $(\mathcal{A}_0, \bar{b}) \leq_{\alpha} (\mathcal{A}_1, \bar{a}) \iff \Pi^{in}_{\alpha} - tp_{\mathcal{A}_0}(\bar{b}) \subseteq \Pi^{in}_{\alpha} - tp_{\mathcal{A}_1}(\bar{a})$

and n_i is the answer to the e_i -th Δ^0_{α} question.

Atomic diagrams are preserved: $\bigcup_n D_{\mathcal{A}_{i_n}}(\bar{a}_n)$ is diagram of structure.

Theorem: [M] Given a computable strategy for the engineer, there is a strategy for the extender such that the limit structure is computable.

We get simpler proofs of the following theorems:

We get simpler proofs of the following theorems:

Under enough effectiveness conditions:

Pairs-of-structures Theorem [Ash, Knight 90]: If $\mathcal{B} \leq_{\alpha} \mathcal{A}$, for every Π^{0}_{α} set D, there is computable sequence $\{\mathcal{C}_{n} : n \in \omega\}$ with $\mathcal{C}_{n} \cong \mathcal{A}$ or $\cong \mathcal{B}$ depending on whether $n \in D$.

We get simpler proofs of the following theorems:

Under enough effectiveness conditions:

Pairs-of-structures Theorem [Ash, Knight 90]: If $\mathcal{B} \leq_{\alpha} \mathcal{A}$, for every Π^{0}_{α} set D, there is computable sequence $\{\mathcal{C}_{n} : n \in \omega\}$ with $\mathcal{C}_{n} \cong \mathcal{A}$ or $\cong \mathcal{B}$ depending on whether $n \in D$.

Theorem [Ash, Jockusch, Knight 90]: A structure is Δ^0_{α} -categorical if and only if there is a tuple over which no other tuple is α -free.

We get simpler proofs of the following theorems:

Under enough effectiveness conditions:

Pairs-of-structures Theorem [Ash, Knight 90]: If $\mathcal{B} \leq_{\alpha} \mathcal{A}$, for every Π^{0}_{α} set D, there is computable sequence $\{\mathcal{C}_{n} : n \in \omega\}$ with $\mathcal{C}_{n} \cong \mathcal{A}$ or $\cong \mathcal{B}$ depending on whether $n \in D$.

Theorem [Ash, Jockusch, Knight 90]: A structure is Δ^0_{α} -categorical if and only if there is a tuple over which no other tuple is α -free.

 $\begin{array}{l} \text{Theorem}[\mathsf{Ash} \ \texttt{87}]: \ \mathsf{A} \ \text{linear ordering} \ \mathcal{L} \ \mathsf{has} \ \Delta_{(2\alpha+1)}\text{-}\mathsf{copy} \iff \\ \mathbb{Z}^{\alpha} \cdot \mathcal{L} \ \mathsf{has computable copy}. \end{array}$

We get simpler proofs of the following theorems:

Under enough effectiveness conditions:

Pairs-of-structures Theorem [Ash, Knight 90]: If $\mathcal{B} \leq_{\alpha} \mathcal{A}$, for every Π^{0}_{α} set D, there is computable sequence $\{\mathcal{C}_{n} : n \in \omega\}$ with $\mathcal{C}_{n} \cong \mathcal{A}$ or $\cong \mathcal{B}$ depending on whether $n \in D$.

Theorem [Ash, Jockusch, Knight 90]: A structure is Δ^0_{α} -categorical if and only if there is a tuple over which no other tuple is α -free.

 $\begin{array}{l} \text{Theorem}[\text{Ash 87}]: \text{ A linear ordering } \mathcal{L} \text{ has } \Delta_{(2\alpha+1)}\text{-copy} \iff \\ \mathbb{Z}^{\alpha} \cdot \mathcal{L} \text{ has computable copy.} \end{array}$

...and many more theorems proved using Ash-Knight's η -systems.

A borader setting for the $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game: the α -topology For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:
 - Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$

where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$

where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$

where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X},\mathbb{A},\mathbb{A}_{lpha})$ -game metatheorem holds,

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$

where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.
For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures,

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures, $\{\mathcal{A}_i : i \in \omega\} \subseteq \mathcal{X}$,

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures, $\{\mathcal{A}_i : i \in \omega\} \subseteq \mathcal{X}$, and \mathbb{A} the collection of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \cong (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{\leq \omega}$.

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures, $\{\mathcal{A}_i : i \in \omega\} \subseteq \mathcal{X}$, and \mathbb{A} the collection of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \cong (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{<\omega}$. Then \mathbb{A}_a consist of

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures, $\{\mathcal{A}_i : i \in \omega\} \subseteq \mathcal{X}$, and \mathbb{A} the collection of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \cong (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{<\omega}$. Then \mathbb{A}_a consist of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{<\omega}$.

For a Polish space \mathcal{X} and $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$, we define $\mathbb{A}_{\xi} \subseteq \mathcal{P}(\mathcal{X})$ for $\xi \leq \alpha$:

- Let \mathbb{A}_0 be the basic open sets in the topology of \mathcal{X} .
- Let $\mathbb{A}_{\xi} = \mathbb{A}_{<\xi} \cup \{\overline{B}^{\xi} : B \in \mathbb{A}\},\$
- where $\mathbb{A}_{<\xi} = \bigcup_{\zeta < \xi} \mathbb{A}_{\zeta}$ and \overline{B}^{ξ} be the closure of B in the topology generated by $\mathbb{A}_{<\xi}$.

The $(\mathcal{X}, \mathbb{A}, \mathbb{A}_{\alpha})$ -game metatheorem holds, provided \mathbb{A} is \cap -closed and $\mathbb{A}_{\alpha} \subseteq \mathbb{A}$.

Theorem: [Louveau][MM] For the collection, \mathbb{A} , of lightface Σ_1^1 subsets: $\mathbb{A}_{\alpha} = \Sigma_1^1 \cap \mathbf{\Pi}_{\alpha}^0 = \Pi_{\alpha}^0(HYP).$

Let \mathcal{X} be the space of presentations of structures, $\{\mathcal{A}_i : i \in \omega\} \subseteq \mathcal{X}$, and \mathbb{A} the collection of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \cong (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{<\omega}$. Then \mathbb{A}_a consist of $\{\mathcal{B} \in \mathcal{X} : (\mathcal{A}_i, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{n})\}$ for $i \in \omega$ and $\bar{a} \in A_i^{<\omega}$.

The proof uses the method of α -true stages, a combinatorial framework to computably approximate the α th-jump,

The proof uses the method of α -true stages, a combinatorial framework to computably approximate the α th-jump,

a combinatorial framework to computably approximate the lphath-jump,

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

• \mathfrak{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}

a combinatorial framework to computably approximate the lphath-jump,

- \mathfrak{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} :

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \upharpoonright n_i}^{\alpha}$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \restriction n_i}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \restriction n_i}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

0 \leq_0 is the inclusion ordering on $\mathbb{N}^{<\omega}$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

- **0** \leq_0 is the inclusion ordering on $\mathbb{N}^{<\omega}$.
- **1** Nestedness: if $\sigma \leq_{\xi} \tau$ and $_{\xi \geq \gamma}$, then $\sigma \leq_{\gamma} \tau$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

- **0** \leq_0 is the inclusion ordering on $\mathbb{N}^{<\omega}$.
- **1** Nestedness: if $\sigma \leq_{\xi} \tau$ and $_{\xi \geq \gamma}$, then $\sigma \leq_{\gamma} \tau$.
- **2** Continuity: if λ is limit, $\leq_{\lambda} = \bigcap_{\xi < \lambda} \leq_{\xi}$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- Υ^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

- **0** \leq_0 is the inclusion ordering on $\mathbb{N}^{<\omega}$.
- **1** Nestedness: if $\sigma \leq_{\xi} \tau$ and $_{\xi \geq \gamma}$, then $\sigma \leq_{\gamma} \tau$.
- **2** Continuity: if λ is limit, $\leq_{\lambda} = \bigcap_{\xi < \lambda} \leq_{\xi}$.

• For every $\rho \subset \sigma \subset \tau$, if $\rho \leq_{\xi+1} \tau$ and $\sigma \leq_{\xi} \tau$, then $\rho \leq_{\xi+1} \sigma$.

a combinatorial framework to computably approximate the $\alpha {\rm th}\mbox{-jump},$

built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

- \mathbb{T}^{α} : $\omega^{\omega} \to \omega^{\omega}$ is left-complete Σ^{0}_{α}
- $\sigma \mapsto \mathfrak{T}_{\sigma}^{\alpha} : \omega^{<\omega} \to \omega^{<\omega}$ is a computable "approximation" to \mathfrak{T}^{α} : for all $x \in \omega^{\omega}$, there are n_0, n_1, \dots such that $\mathfrak{T}^{\alpha}(x) = \bigcup \mathfrak{T}_{x \perp n_s}^{\alpha}$.
- We say that $\sigma \subset x$ is x- α -true if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}^{\alpha}(x)$.
- We say that $\tau \alpha$ -believes in σ if $\mathfrak{T}_{\sigma}^{\alpha} \subseteq \mathfrak{T}_{\tau}^{\alpha}$. We write $\sigma \leq_{\alpha} \tau$.

For $\xi \leq \alpha$, the relations \leq_{ξ} on $\omega^{<\omega}$ satisfy:

- $\mathbf{O} \leq_0$ is the inclusion ordering on $\mathbb{N}^{<\omega}$.
- **1** Nestedness: if $\sigma \leq_{\xi} \tau$ and $_{\xi \geq \gamma}$, then $\sigma \leq_{\gamma} \tau$.
- **2** Continuity: if λ is limit, $\leq_{\lambda} = \bigcap_{\xi < \lambda} \leq_{\xi}$.

• For every $\rho \subset \sigma \subset \tau$, if $\rho \leq_{\xi+1} \tau$ and $\sigma \leq_{\xi} \tau$, then $\rho \leq_{\xi+1} \sigma$.

Theorem: [Greenberg, Turetsky 22] [M. 14] [M, CST book II] Such \mathfrak{T}^{ξ} and \leq_{ξ} , for $\xi \leq \alpha$, exist.

The main applications of the topological α -game so far:

The main applications of the topological α -game so far:

Theorem: [Marks, Montalbán] For every ordinal β and Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

• F is not piecewise Baire-class- β .

• Every Baire-class- $(\beta + 1)$ function continuously reduces to F.

The main applications of the topological α -game so far:

Theorem: [Marks, Montalbán] For every ordinal β and Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- F is not piecewise Baire-class- β .
- Every Baire-class- $(\beta + 1)$ function continuously reduces to F.

Theorem: [Marks, Montalbán – work in progress] For every ordinal β and Borel function $F: \omega^{\omega} \to \mathcal{X}$, the following are equivalent:

- The pre-image under F of every $\Sigma^0_{\beta+1}$ set is $\Sigma^0_{\beta+1}$.
- F is piecewise continuous on Π^0_β domains.

HAPPY BIRTHDAY TED!