Ordinal Arithmetic without Σ_1^0 Induction

Marcia Groszek Ben Logsdon Justin Miller

Dartmouth College

Computability and Mathematical Definability Celebrating the Seventieth Birthday of Theodore Slaman University of California, Berkeley October 11-13 2024

Context

Reverse Mathematics: Calibrate logical strength of theorems by set-theoretic existence axioms.

Use a first-order theory of second-order arithmetic.

RCA: P^- (finitary part of Peano Arithmetic), induction for all formulas, recursive (Δ_1^0) comprehension axiom.

*RCA*₀: Weaken induction to Σ_1^0 formulas.

 RCA_0^* : Weaken induction to Δ_1^0 formulas; exponentiation is total.

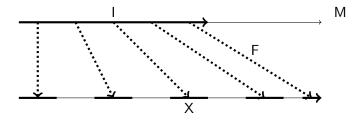
Factorization of polynomials and $\boldsymbol{\Sigma}_1^0$ induction

Stephen G. Simpson and Rick L. Smith

1986

Annals of Pure and Applied Logic

A model *M* of $RCA_0^* + \neg I \Sigma_1^0$ has Σ_1^0 -definable proper cuts. *I* is Σ_1^0 definable but not an element of *M*.



F is increasing and cofinal with range X.

F and X are elements of M.

Ordinal arithmetic in RCA_0^*

A survey of the reverse mathematics of ordinal arithmetic

Jeffry L. Hirst

2005

Reverse Mathematics 2001 ed. S. G. Simpson

Overview

 $\label{eq:attraction} ATR_0: \mbox{ Ordinals behave well under addition, multiplication, exponentiation, ordering.}$

 ACA_0 : Ordering on ordinals is not total.

 RCA_0 : Exponentiation of ordinals is not total.

Overview

 ATR_0 : Ordinals behave well under addition, multiplication, exponentiation, ordering.

ACA₀: Ordering on ordinals is not total.

RCA₀: Exponentiation of ordinals is not total.

RCA₀^{*}: Multiplication of ordinals is not total.

Overview

Universal statements tend to persist in RCA₀*

$$(\forall \alpha, \beta, \gamma)(\alpha^{\beta}\alpha^{\gamma} \cong \alpha^{\beta+\gamma})$$

unless they involve ordering

$$ATR_0 \iff (\forall \alpha)(\forall \beta)(\alpha \leq \beta \lor \beta \leq \alpha).$$

The ordinal ω is problematic.

Suppose T is a theory extending RCA_0 and $RCA_0 \vdash T \leftrightarrow \varphi$.

To show $RCA_0^* \vdash T \leftrightarrow \varphi$:

Suppose T is a theory extending RCA_0 and $RCA_0 \vdash T \leftrightarrow \varphi$.

To show $RCA_0^* \vdash T \leftrightarrow \varphi$:

When the given proof for the reversal requires $I\Sigma_1^0$, show directly that $RCA_0^* + \neg I\Sigma_1^0 \vdash \neg \varphi$.

Suppose T is a theory extending RCA_0 and $RCA_0 \vdash T \leftrightarrow \varphi$.

To show $RCA_0^* \vdash T \leftrightarrow \varphi$:

When the given proof for the reversal requires $I\Sigma_1^0$, show directly that $RCA_0^* + \neg I\Sigma_1^0 \vdash \neg \varphi$.

Equivalence: Show $RCA_0^* \vdash I\Sigma_1^0 \leftrightarrow \varphi^*$ for a weak version φ^* of φ .

Suppose T is a theory extending RCA_0 and $RCA_0 \vdash T \leftrightarrow \varphi$.

To show $RCA_0^* \vdash T \leftrightarrow \varphi$:

When the given proof for the reversal requires $I\Sigma_1^0$, show directly that $RCA_0^* + \neg I\Sigma_1^0 \vdash \neg \varphi$.

Equivalence: Show $RCA_0^* \vdash I\Sigma_1^0 \leftrightarrow \varphi^*$ for a weak version φ^* of φ .

Local result: Characterize which numbers bound Σ_1^0 -definable cuts using failures of φ (or of φ^*).

Definition: $\alpha \leq_{s} \beta$ iff there is an order-preserving function from α onto an initial segment of β .

Theorem (RCA_0) (H. Friedman):

 $ATR_0 \leftrightarrow$ For any ordinals α and β either $\alpha \leq_s \beta$ or $\beta \leq_s \alpha$.

Theorem (RCA_0^*) :

(A.) If $I\Sigma_1^0$ does not hold, there are ordinals that are not strongly comparable.

Definition: $\alpha \leq_{s} \beta$ iff there is an order-preserving function from α onto an initial segment of β .

Theorem (RCA_0) (H. Friedman):

 $ATR_0 \leftrightarrow$ For any ordinals α and β either $\alpha \leq_s \beta$ or $\beta \leq_s \alpha$.

Theorem (RCA_0^*) :

(A.) If $I\Sigma_1^0$ does not hold, there are ordinals that are not strongly comparable.

(B.) $I\Sigma_1^0$ holds iff any two ordinals, one of which is *M*-finite, are strongly comparable.

Definition: $\alpha \leq_{s} \beta$ iff there is an order-preserving function from α onto an initial segment of β .

Theorem (RCA_0) (H. Friedman):

 $ATR_0 \leftrightarrow$ For any ordinals α and β either $\alpha \leq_s \beta$ or $\beta \leq_s \alpha$.

Theorem (RCA_0^*) :

(A.) If $I\Sigma_1^0$ does not hold, there are ordinals that are not strongly comparable.

(B.) $I\Sigma_1^0$ holds iff any two ordinals, one of which is *M*-finite, are strongly comparable.

(C.) A (nonstandard) number *a* bounds a Σ_1^0 cut iff there is an ordinal α that is not strongly comparable to *a*.

a bounds a Σ_1^0 cut \rightarrow there is an ordinal α that is not strongly comparable to a.

Choose I so $\frac{a}{2}$ bounds I (this is always possible); $F: I \rightarrow M$ increasing, cofinal. $\alpha = (\omega \times \{0\}) \cup graph(F)$, ordered lexicographically.

Key fact

Lemma (Chong and Mourad): If I is a Σ_1^0 cut in $M \models RCA_0^*$, A is a Σ_1^0 subset of I, and I - A is also Σ_1^0 , then there is an M-finite set X such that $A = X \cap I$.

Corollary: If *I* is closed under exponentiation, M_I with universe *I* and second order part $\{X \cap I \mid X \text{ is } M\text{-finite}\}$ is a model of RCA_0^* .

Corollary: $M_I \models RCA_0$ iff *I* is a minimal Σ_1^0 cut.

Weaker cousins of Ramsey's theorem over a weak base theory

Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk, and Katarzyna W. Kowalik

2021

Annals of Pure and Applied Logic

The ordinal $\boldsymbol{\omega}$

The order type of M is ω_M .

If there is a minimal Σ_1^0 -definable cut I_0 , the order type of I_0 is ω_0 .

Both are reasonable candidates for " ω ."

Proposition (RCA_0^*) : ω_M^2 is an ordinal $\iff I\Sigma_1^0$. ω_0^2 (if ω_0 exists) is always an ordinal.

There is an infinite ordinal α such that α^2 is also an ordinal iff there is a minimal Σ_1^0 -definable cut.

Pushup and pullback

Suppose I_0 is a minimal Σ_1^0 -definable cut. M_{I_0} is denoted M_0 Let $F : I_0 \to M$ be increasing and cofinal with range X.

A structure S_0 on I_0 pushes up via F to a structure S on X in M. A structure S on X in M pulls back via F to a structure S_0 in M_0 . These structures are isomorphic as second order structures in Mand M_0 respectively.

Example: F takes ω_{M_0} in M_0 to ω_0 in M. $\omega_{M_0}^2$ is an ordinal in M_0 because $M_0 \models RCA_0$, Therefore ω_0^2 is an ordinal in M.

Theorem (*RCA*₀) (Friedman and Hirst, Hirst): TFAE

(1.) $ACA_0;$

- (2.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \leq_w \omega$ then $\omega \equiv_s \alpha$;
- (3.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \not\leq_w \omega$ then $\omega <_w \alpha$.

Theorem (*RCA*₀) (Friedman and Hirst, Hirst): TFAE

(1.) $ACA_0;$

(2.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \leq_w \omega$ then $\omega \equiv_s \alpha$;

(3.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \not\leq_w \omega$ then $\omega <_w \alpha$.

Proposition ($RCA_0^* + (\omega_0 \text{ exists})$): TFAE

(1.) M₀ ⊨ ACA₀;
(2.) If α is an ordinal with ω₀ ≤_w α and α ≤_w ω₀ then ω₀ ≡_s α;
(3.) If β is an ordinal with ω₀ ≤_w β and β ≰_w ω₀ then ω₀ <_w β.

Example: Ordinals compared to ω

(1.) M₀ ⊨ ACA₀;
(3.) If β is an ordinal with ω₀ ≤_w β and β ≰_w ω₀ then ω₀ <_w β.

Suppose $M_0 \not\models ACA_0$. Then (by Hirst) in M_0 there is a counterexample $\omega_{M_0} \leq_w \alpha$ and $\alpha \not\leq_w \omega_{M_0}$ but $\omega_{M_0} \not<_w \alpha$. That pushes up to a counterexample to (3) in M $\omega_0 \leq_w \beta$ and $\beta \not\leq_w \omega_0$ but $\omega_0 \not<_w \beta$.

Suppose there is a counterexample to (3) in M $\omega_0 \leq_w \beta$ and $\beta \not\leq_w \omega_0$ but $\omega_0 \not<_w \beta$. Since $\omega_0 \not<_w \beta$, we must have $CARD(\beta) = \omega_0$.

Example: Ordinals compared to ω

(1.) M₀ ⊨ ACA₀;
(3.) If β is an ordinal with ω₀ ≤_w β and β ≰_w ω₀ then ω₀ <_w β.

Suppose $M_0 \not\models ACA_0$. Then (by Hirst) in M_0 there is a counterexample $\omega_{M_0} \leq_w \alpha$ and $\alpha \not\leq_w \omega_{M_0}$ but $\omega_{M_0} \not<_w \alpha$. That pushes up to a counterexample to (3) in M $\omega_0 \leq_w \beta$ and $\beta \not\leq_w \omega_0$ but $\omega_0 \not<_w \beta$.

Suppose there is a counterexample to (3) in M $\omega_0 \leq_w \beta$ and $\beta \not\leq_w \omega_0$ but $\omega_0 \not<_w \beta$. Since $\omega_0 \not<_w \beta$, we must have $CARD(\beta) = \omega_0$. I.e. there is $F : I_0 \rightarrow \beta$, so the counterexample pulls back to M_0 , showing $M_0 \not\models ACA_0$.

Theorem (*RCA*₀) (Friedman and Hirst, Hirst): TFAE

- (1.) $ACA_0;$
- (2.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \leq_w \omega$ then $\omega \equiv_s \alpha$;
- (3.) If β is an ordinal with $\omega \leq_w \beta$ and $\beta \not\leq_w \omega$ then $\omega <_w \beta$.

Theorem (*RCA*₀) (Friedman and Hirst, Hirst): TFAE

- (1.) $ACA_0;$
- (2.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \leq_w \omega$ then $\omega \equiv_s \alpha$;
- (3.) If β is an ordinal with $\omega \leq_w \beta$ and $\beta \not\leq_w \omega$ then $\omega <_w \beta$.

```
Proposition (RCA_0^*):
```

TFAE

- (1.) ACA_0 ;
- (2.) If α is an ordinal with $\omega_M \leq_w \alpha$ and $\alpha \leq_w \omega_M$ then $\omega_M \equiv_s \alpha$.

Theorem (*RCA*₀) (Friedman and Hirst, Hirst): TFAE

- (1.) $ACA_0;$
- (2.) If α is an ordinal with $\omega \leq_w \alpha$ and $\alpha \leq_w \omega$ then $\omega \equiv_s \alpha$;
- (3.) If β is an ordinal with $\omega \leq_w \beta$ and $\beta \not\leq_w \omega$ then $\omega <_w \beta$.

Proposition (*RCA*₀^{*}): TFAE (1.) *ACA*₀; (2.) If α is an ordinal with $\omega_M \leq_w \alpha$ and $\alpha \leq_w \omega_M$ then $\omega_M \equiv_s \alpha$.

Suppose $RCA_0^* + \neg I\Sigma_1^0$.

Is there an ordinal β with $\omega_M \leq_w \beta$ and $\beta \not\leq_w \omega_M$ but $\omega_M \not<_w \beta$?

Suppose $RCA_0^* + \neg I \Sigma_1^0$. Is there an ordinal β with $\omega_M \leq_w \beta$ and $\beta \not\leq_w \omega_M$ but $\omega_M \not\leq_w \beta$?

Over $RCA_0 + \neg ACA_0$, let X be Σ_1^0 and $X \notin M$.

Define β to contain a copy x_0, x_1, \ldots of ω_M , with *s*-many elements between x_n and x_{n+1} if *s* is the least witness to $n \in X$.

Suppose $RCA_0^* + \neg I\Sigma_1^0$.

Is there an ordinal β with $\omega_M \leq_w \beta$ and $\beta \not\leq_w \omega_M$ but $\omega_M \not<_w \beta$?

Over $RCA_0 + \neg ACA_0$, let X be Σ_1^0 and $X \notin M$.

Define β to contain a copy x_0, x_1, \ldots of ω_M , with *s*-many elements between x_n and x_{n+1} if *s* is the least witness to $n \in X$.

Then we cannot embed β in ω_M , because the image of x_{n+1} would give a bound on a witness to $n \in X$.

We cannot embed ω_M into an initial segment of β because initial segments of β are finite. This is by Σ_1^0 bounding, because initial segments of X are finite.

Suppose $RCA_0^* + \neg I\Sigma_1^0$.

Is there an ordinal β with $\omega_M \leq_w \beta$ and $\beta \not\leq_w \omega_M$ but $\omega_M \not<_w \beta$?

Over $RCA_0 + \neg ACA_0$, let X be Σ_1^0 and $X \notin M$.

Define β to contain a copy x_0, x_1, \ldots of ω_M , with *s*-many elements between x_n and x_{n+1} if *s* is the least witness to $n \in X$.

Then we cannot embed β in ω_M , because the image of x_{n+1} would give a bound on a witness to $n \in X$.

We cannot embed ω_M into an initial segment of β because initial segments of β are finite. This is by Σ_1^0 bounding, because initial segments of X are finite.

That last fact requires $I\Sigma_1^0$.

Thank you!

Factorization of polynomials and Σ_1^0 induction Stephen G. Simpson and Rick L. Smith 1986 Annals of Pure and Applied Logic

A survey of the reverse mathematics of ordinal arithmetic Jeffry L. Hirst

2005 Reverse Mathematics 2001 ed. S. G. Simpson

Weaker cousins of Ramsey's theorem over a weak base theory Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk, and Katarzyna W. Kowalik 2021 Annals of Pure and Applied Logic