# The Minimal $\alpha$ -Degree Problem Revisited

### Chi Tat Chong

National University of Singapore

chongct@nus.edu.sg

Berkeley 11 October 2024



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

## Recursion theory on admissible ordinals

### A limit ordinal $\alpha$ is *admissible* if $(L_{\alpha}, \in) \models KP$ .

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.

- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- Given A, B ⊆ α, we say that A is α-recursive in B (A ≤<sub>α</sub> B) if there is an algorithm for computing every α-finite subset of A and α \ A using α-finite information about B and α \ B.
- $\blacksquare \leq_{\alpha}$  is a transitive relation.
- .  $A \equiv_{\alpha} B$  means  $A \leq_{\alpha} B$  and  $B \leq_{\alpha} A$ .
- $\equiv_{\alpha}$  decomposes subsets of  $\alpha$  into equivalence classes called  $\alpha$ -degrees.
- **0** is the  $\alpha$ -degree of the  $\alpha$ -recursive sets.
- **0**' is the  $\alpha$ -degree of the halting set  $\emptyset'$ , etc.

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible  $\alpha$ .
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- (Shore, 1976) The  $\alpha$ -r.e. degrees are dense.
- (S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

 (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.

- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- (Shore, 1976) The  $\alpha$ -r.e. degrees are dense.
- (S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- (Shore, 1976) The  $\alpha$ -r.e. degrees are dense.
- S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- **(Shore, 1976)** The  $\alpha$ -r.e. degrees are dense.
- (S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- **(Shore, 1976)** The  $\alpha$ -r.e. degrees are dense.
- S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- **(Shore, 1976)** The  $\alpha$ -r.e. degrees are dense.
- S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{\text{CK}}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the  $\alpha$ -degrees is undecidable for all  $\alpha$ .

- (Sacks and Simpson, 1972) The Friedberg-Muchnik Theorem holds for all admissible *α*.
- (Lerman, 1974) There is a maximal  $\alpha$ -r.e. set if and only if  $S_3$ -projectum( $\alpha$ ) =  $\omega$ .
- **(Shore, 1976)** The  $\alpha$ -r.e. degrees are dense.
- S Friedman, 1981) Assume V = L. If α = ℵ<sub>ω1</sub>, then the α-degrees ≥ 0' are well-ordered with successor generated via the jump operator. Every a ≥ 0' is the α-degree of a master code.
- Greenberg, Shore and Slaman, 2006) If  $\alpha = \omega_1^{CK}$ , then the  $\omega$ -degree of the theory of  $\alpha$ -r.e. degrees is that of  $\mathcal{O}^{(\omega)}$ .
- (Chong and Slaman, 2010) The theory of the α-degrees is undecidable for all α.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- (Sacks, 1963) There is a minimal  $\omega$ -degree < 0'.
- (J Macintyre, 1973) If  $\alpha$  is countable or a regular cardinal, then there is a minimal  $\alpha$ -degree.
- (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree < **0**'.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- (Sacks, 1963) There is a minimal  $\omega$ -degree < **0**′.
- (J Macintyre, 1973) If  $\alpha$  is countable or a regular cardinal, then there is a minimal  $\alpha$ -degree.
- (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree < **0**'.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- (Sacks, 1963) There is a minimal  $\omega$ -degree < **0**′.
- (J Macintyre, 1973) If  $\alpha$  is countable or a regular cardinal, then there is a minimal  $\alpha$ -degree.
- (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree < 0'.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- (Sacks, 1963) There is a minimal  $\omega$ -degree < 0'.
- (J Macintyre, 1973) If  $\alpha$  is countable or a regular cardinal, then there is a minimal  $\alpha$ -degree.
- (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree < 0'.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

 $\mathbf{b} < \mathbf{a} \Rightarrow \mathbf{b} = \mathbf{0}.$ 

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- **(Sacks, 1963)** There is a minimal  $\omega$ -degree < 0'.
- (J Macintyre, 1973) If α is countable or a regular cardinal, then there is a minimal α-degree.

• (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree < 0'.

An  $\alpha$ -degree **a** > **0** is minimal if for all **b**,

- (Spector, 1956) There is a minimal  $\omega$ -degree.
- (Sacks, 1963) There is a minimal  $\omega$ -degree < 0'.
- (J Macintyre, 1973) If α is countable or a regular cardinal, then there is a minimal α-degree.
- (Shore, 1972) If  $\alpha$  is  $\Sigma_2$ -admissible, then there is a minimal  $\alpha$ -degree  $< \mathbf{0}'$ .

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";

For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .

- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

### The Spector construction of a set of minimal $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;

If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

The Spector construction of a set of minimal  $\omega$ -degree:

- Forcing with perfect trees to produce a generic *G*;
- Every oracle computation Φ is assigned with a recursive perfect tree T<sub>Φ</sub> which is either "splitting" or "full";
- For each  $\Phi$ , *G* is a path on  $T_{\Phi}$ .
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a splitting tree, then  $\Phi^G \equiv_T G$ ;
- If  $\Phi^G$  is total and  $T_{\Phi}$  is a full tree, then  $\Phi^G$  is recursive.

### $e\mapsto (\mathsf{Index} \mathsf{ of}) T_{\Phi_e}$

can be made  $\emptyset''$ -recursive so as to obtain a set of minimal degree  $<_T \mathbf{0}''$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- By refining the construction with a Ø-recursive approximation, one can obtain a solution below 0′.
- This idea can be extended to handle Σ<sub>2</sub>-admissible ordinals.

### $e \mapsto (\text{Index of}) T_{\Phi_e}$

can be made  $\emptyset''$ -recursive so as to obtain a set of minimal degree  $<_{\mathcal{T}} \mathbf{0}''$ .

(ロ) (同) (三) (三) (三) (○) (○)

- By refining the construction with a Ø-recursive approximation, one can obtain a solution below 0′.
- This idea can be extended to handle Σ<sub>2</sub>-admissible ordinals.

 $e \mapsto (\text{Index of}) T_{\Phi_e}$ 

can be made  $\emptyset''$ -recursive so as to obtain a set of minimal degree  $<_{\mathcal{T}} \mathbf{0}''$ .

(日) (日) (日) (日) (日) (日) (日)

- By refining the construction with a Ø-recursive approximation, one can obtain a solution below **0**′.
- This idea can be extended to handle Σ<sub>2</sub>-admissible ordinals.

 $e \mapsto (\text{Index of}) T_{\Phi_e}$ 

can be made  $\emptyset''$ -recursive so as to obtain a set of minimal degree  $<_{\mathcal{T}} \mathbf{0}''$ .

(日) (日) (日) (日) (日) (日) (日)

- By refining the construction with a Ø-recursive approximation, one can obtain a solution below 0′.
- This idea can be extended to handle Σ<sub>2</sub>-admissible ordinals.

# Failure of the Spector idea

The approach fails for  $\Sigma_2$ -inadmissible  $\alpha$ . As an example:

• Let  $\alpha = \aleph_{\omega}^{L}$ . For  $n \in \omega$  define

 $\Phi_n^{\sigma}(x) = \begin{cases} \sigma(x) & \text{If } L_x \models \text{ "There are less than } n \text{ cardinals"} \\ 1 & \text{Otherwise} \end{cases}$ 

- For any G and n, Φ<sup>G</sup><sub>n</sub> is α-recursive, and the Spector construction mandates T<sub>Φn</sub> to be a full tree.
- Major obstruction: The set (of indices of) {Φ<sub>n</sub> : n ∈ ω} is α-finite but ∩<sub>n∈ω</sub> T<sub>Φ<sub>n</sub></sub> = {G} is a single path and not an α-recursive perfect tree.

(ロ) (同) (三) (三) (三) (○) (○)

Let 
$$\alpha = \aleph_{\omega}^{L}$$
. For  $n \in \omega$  define  
 $\Phi_{n}^{\sigma}(x) = \begin{cases} \sigma(x) & \text{If } L_{x} \models \text{``There are less than } n \text{ cardinals''} \\ 1 & \text{Otherwise} \end{cases}$ 

- For any G and n, Φ<sup>G</sup><sub>n</sub> is α-recursive, and the Spector construction mandates T<sub>Φ<sub>n</sub></sub> to be a full tree.
- Major obstruction: The set (of indices of) {Φ<sub>n</sub> : n ∈ ω} is α-finite but ∩<sub>n∈ω</sub> T<sub>Φ<sub>n</sub></sub> = {G} is a single path and not an α-recursive perfect tree.

(ロ) (同) (三) (三) (三) (○) (○)

• Let 
$$\alpha = \aleph_{\omega}^{L}$$
. For  $n \in \omega$  define

 $\Phi_n^{\sigma}(x) = \begin{cases} \sigma(x) & \text{ If } L_x \models \text{ "There are less than } n \text{ cardinals''} \\ 1 & \text{ Otherwise} \end{cases}$ 

- For any *G* and *n*, Φ<sup>G</sup><sub>n</sub> is α-recursive, and the Spector construction mandates *T*<sub>Φ<sub>n</sub></sub> to be a full tree.
- Major obstruction: The set (of indices of) {Φ<sub>n</sub> : n ∈ ω} is α-finite but ∩<sub>n∈ω</sub> T<sub>Φn</sub> = {G} is a single path and not an α-recursive perfect tree.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Let 
$$\alpha = \aleph_{\omega}^{L}$$
. For  $n \in \omega$  define

 $\Phi_n^{\sigma}(x) = \begin{cases} \sigma(x) & \text{ If } L_x \models \text{ "There are less than } n \text{ cardinals''} \\ 1 & \text{ Otherwise} \end{cases}$ 

For any *G* and *n*, Φ<sup>G</sup><sub>n</sub> is α-recursive, and the Spector construction mandates *T*<sub>Φ<sub>n</sub></sub> to be a full tree.

Major obstruction: The set (of indices of) {Φ<sub>n</sub> : n ∈ ω} is α-finite but ∩<sub>n∈ω</sub> T<sub>Φ<sub>n</sub></sub> = {G} is a single path and not an α-recursive perfect tree.

Let 
$$\alpha = \aleph_{\omega}^{L}$$
. For  $n \in \omega$  define

 $\Phi_n^{\sigma}(x) = \begin{cases} \sigma(x) & \text{ If } L_x \models \text{ "There are less than } n \text{ cardinals''} \\ 1 & \text{ Otherwise} \end{cases}$ 

- For any *G* and *n*, Φ<sup>G</sup><sub>n</sub> is α-recursive, and the Spector construction mandates *T*<sub>Φ<sub>n</sub></sub> to be a full tree.
- Major obstruction: The set (of indices of) {Φ<sub>n</sub> : n ∈ ω} is α-finite but ∩<sub>n∈ω</sub> T<sub>Φ<sub>n</sub></sub> = {G} is a single path and not an α-recursive perfect tree.
- Similar situation for any  $\Sigma_2$ -inadmissible cardinal.

## Minimal $\alpha$ -degree for $\alpha = \aleph_{\omega_1}$ under V = L

#### Theorem (V = L)

If **a** is a minimal  $\alpha$ -degree, then **a** < **0**'.



# Minimal $\alpha$ -degree for $\alpha = \aleph_{\omega_1}$ under V = L

### Theorem (V = L)

If **a** is a minimal  $\alpha$ -degree, then **a** < **0**'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Growth function of a set under V = L

### Definition (v = L)

Let  $A \subseteq \alpha = \aleph_{\omega_1}$ . The growth function  $f_A$  of A is

$$f_A(x) =$$
 the order of  $A \upharpoonright x$  in L.

#### Definition

 $A \subset \alpha$  is tame if there is a  $B \leq_{\alpha} \emptyset'$  such that

$$\{\nu : \nu < \omega_1 \text{ and } f_A(\aleph_\nu) \leq f_B(\aleph_\nu)\}$$

is stationary in  $\omega_1$ .

#### Lemma

```
If A \subset \alpha is tame, then A \leq_{\alpha} \emptyset'.
```

# Growth function of a set under V = L

Definition (
$$v = L$$
)

Let  $A \subseteq \alpha = \aleph_{\omega_1}$ . The growth function  $f_A$  of A is

$$f_A(x) =$$
 the order of  $A \upharpoonright x$  in L.

#### Definition

 $A \subset \alpha$  is tame if there is a  $B \leq_{\alpha} \emptyset'$  such that

$$\{\nu : \nu < \omega_1 \text{ and } f_A(\aleph_\nu) \leq f_B(\aleph_\nu)\}$$

is stationary in  $\omega_1$ .

#### Lemma

```
If A \subset \alpha is tame, then A \leq_{\alpha} \emptyset'.
```

# Growth function of a set under V = L

Definition (
$$v = L$$
)

Let  $A \subseteq \alpha = \aleph_{\omega_1}$ . The growth function  $f_A$  of A is

$$f_A(x) =$$
 the order of  $A \upharpoonright x$  in L.

#### Definition

 $A \subset \alpha$  is tame if there is a  $B \leq_{\alpha} \emptyset'$  such that

$$\{\nu : \nu < \omega_1 \text{ and } f_A(\aleph_\nu) \leq f_B(\aleph_\nu)\}$$

<ロ> <回> <回> < 三> < 三> < 三> < 三</p>

is stationary in  $\omega_1$ .

#### Lemma

If 
$$A \subset \alpha$$
 is tame, then  $A \leq_{\alpha} \emptyset'$ .

# Minimal $\alpha$ -degree for $\alpha = \aleph_{\omega_1}$ under V = L

#### Lemma

For any  $A \subset \alpha$  either deg(A) is not a minimal  $\alpha$ -degree, or A is tame.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A tree *T* is tagged with an  $\alpha$ -recursive function  $f : T \to \alpha$  if  $f(\sigma) : \overline{\sigma \in T}$  is unbounded in  $\alpha$ ; For all  $\sigma \in T, f(\sigma) \le |\sigma|$ .

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-splitting for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,

 $\sigma \upharpoonright f(\sigma) \neq \tau \upharpoonright f(\tau) \Rightarrow \exists x \le \min\{f(\sigma), f(\tau)\}(\Phi^{\sigma}(x) \neq \Phi^{\tau}(x)).$ 

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-full for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,



A tree *T* is tagged with an  $\alpha$ -recursive function  $f : T \to \alpha$  if  $\{f(\sigma) : \overline{\sigma \in T}\} \text{ is unbounded in } \alpha;$ 

For all 
$$\sigma \in I$$
,  $f(\sigma) \leq |\sigma|$ 

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-splitting for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,

 $\sigma \upharpoonright f(\sigma) \neq \tau \upharpoonright f(\tau) \Rightarrow \exists x \leq \min\{f(\sigma), f(\tau)\}(\Phi^{\sigma}(x) \neq \Phi^{\tau}(x)).$ 

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-full for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,

A tree *T* is tagged with an  $\alpha$ -recursive function  $f : T \to \alpha$  if  $\{f(\sigma) : \overline{\sigma \in T}\}$  is unbounded in  $\alpha$ ; For all  $\sigma \in T, f(\sigma) \le |\sigma|$ .

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-splitting for  $\Phi$  if

For all 
$$\sigma, \tau \in T$$
,

 $\sigma \upharpoonright f(\sigma) \neq \tau \upharpoonright f(\tau) \Rightarrow \exists x \leq \min\{f(\sigma), f(\tau)\}(\Phi^{\sigma}(x) \neq \Phi^{\tau}(x)).$ 

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-full for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,

A tree *T* is tagged with an  $\alpha$ -recursive function  $f : T \to \alpha$  if  $\{f(\sigma) : \overline{\sigma \in T}\}$  is unbounded in  $\alpha$ ; For all  $\sigma \in T, f(\sigma) \le |\sigma|$ .

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-splitting for  $\Phi$  if

For all 
$$\sigma, \tau \in T$$
,

 $\sigma \upharpoonright f(\sigma) \neq \tau \upharpoonright f(\tau) \Rightarrow \exists x \leq \min\{f(\sigma), f(\tau)\}(\Phi^{\sigma}(x) \neq \Phi^{\tau}(x)).$ 

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-full for  $\Phi$  if

For all  $\sigma, \tau \in T$ ,

A tree *T* is tagged with an  $\alpha$ -recursive function  $f : T \to \alpha$  if  $\{f(\sigma) : \overline{\sigma \in T}\}$  is unbounded in  $\alpha$ ; For all  $\sigma \in T, f(\sigma) \le |\sigma|$ .

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-splitting for  $\Phi$  if

For all 
$$\sigma, \tau \in T$$
,

$$\sigma \upharpoonright f(\sigma) \neq \tau \upharpoonright f(\tau) \Rightarrow \exists x \leq \min\{f(\sigma), f(\tau)\}(\Phi^{\sigma}(x) \neq \Phi^{\tau}(x)).$$

#### Definition

An  $\alpha$ -recursive tree T tagged with f is quasi-full for  $\Phi$  if

For all 
$$\sigma, \tau \in T$$
,

$$\Phi^{\sigma}(x) = \Phi^{\tau}(x)$$
 for all  $x \leq \min\{f(\sigma), f(\tau)\}.$ 

(Chong, 1979) The  $\alpha$ -degree of  $G \leq_{\alpha} \emptyset'$  is minimal if and only if

 For each Φ, if Φ<sup>G</sup> is total then there is an α-recursive tree *T*<sub>Φ</sub> tagged with an *f* such that *T*<sub>Φ</sub> is either quasi-splitting or quasi-full for Φ;

2 G is a path on  $T_{\Phi}$ ;

3

 $\{\min\{f(\sigma), f(\tau) : \sigma, \tau \in T_{\Phi} \& \sigma \prec G, \tau \not\prec G\}$ 

A D F A 同 F A E F A E F A Q A

is unbounded in lpha.

(Chong, 1979) The  $\alpha$ -degree of  $G \leq_{\alpha} \emptyset'$  is minimal if and only if

- For each Φ, if Φ<sup>G</sup> is total then there is an α-recursive tree *T*<sub>Φ</sub> tagged with an *f* such that *T*<sub>Φ</sub> is either quasi-splitting or quasi-full for Φ;
- **2** G is a path on  $T_{\Phi}$ ;

3

 $\{\min\{f(\sigma), f(\tau\} : \sigma, \tau \in T_{\Phi} \& \sigma \prec G, \tau \not\prec G\}$ 

A D F A 同 F A E F A E F A Q A

is unbounded in  $\alpha$ .

(Chong, 1979) The  $\alpha$ -degree of  $G \leq_{\alpha} \emptyset'$  is minimal if and only if

- For each Φ, if Φ<sup>G</sup> is total then there is an α-recursive tree *T*<sub>Φ</sub> tagged with an *f* such that *T*<sub>Φ</sub> is either quasi-splitting or quasi-full for Φ;
- **2** G is a path on  $T_{\Phi}$ ;

3

$$\{\min\{f(\sigma), f(\tau) : \sigma, \tau \in T_{\Phi} \& \sigma \prec G, \tau \not\prec G\}$$

(日) (日) (日) (日) (日) (日) (日)

is unbounded in  $\alpha$ .

# When is the degree of A minimal?

### Theorem (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . Then  $A \subset \alpha$  is of minimal  $\alpha$ -degree if and only if

 $\{
u : \mathbf{A} \upharpoonright \aleph_{\nu} \text{ is of minimal } \aleph_{\nu}\text{-degree }\}$ 

is stationary in  $\omega_1$ .

Corollary (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . If  $A \not\leq_{\alpha} \emptyset'$ , then

 $\{\nu : \mathbf{A} \upharpoonright \aleph_{\nu} \not\leq_{\alpha} \emptyset' \& \text{ is not of minimal } \aleph_{\nu}\text{-degree}\}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is stationary in  $\omega_1$ .

### Theorem (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . Then  $A \subset \alpha$  is of minimal  $\alpha$ -degree if and only if

 $\{\nu : \mathbf{A} \upharpoonright \aleph_{\nu} \text{ is of minimal } \aleph_{\nu} \text{-degree } \}$ 

is stationary in  $\omega_1$ .

Corollary (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . If  $A \not\leq_{\alpha} \emptyset'$ , then

 $\{\nu : \mathbf{A} \upharpoonright \aleph_{\nu} \not\leq_{\alpha} \emptyset' \& \text{ is not of minimal } \aleph_{\nu}\text{-degree}\}$ 

(日) (日) (日) (日) (日) (日) (日)

is stationary in  $\omega_1$ .

### Theorem (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . Then  $A \subset \alpha$  is of minimal  $\alpha$ -degree if and only if

 $\{\nu : \mathbf{A} \upharpoonright \aleph_{\nu} \text{ is of minimal } \aleph_{\nu} \text{-degree } \}$ 

is stationary in  $\omega_1$ .

Corollary (V = L)

Let  $\alpha = \aleph_{\omega_1}$ . If  $A \not\leq_{\alpha} \emptyset'$ , then

 $\{\nu : \mathbf{A} \upharpoonright \aleph_{\nu} \not\leq_{\alpha} \emptyset' \& \text{ is not of minimal } \aleph_{\nu}\text{-degree}\}$ 

is stationary in  $\omega_1$ .

# Countable vs uncountable cofinality

### Corollary (V = L)

If there is a minimal  $\aleph_{\omega_1}$ -degree below  $\mathbf{0}'$ , then the set

 $\{\nu : \text{There is a minimal } \aleph_{\nu} \text{-degree below } \mathbf{0}'\}$ 

is stationary in  $\omega_1$ . In particular, each such  $\nu$  is countable.

Conjecture:

Assume V = L. There is no minimal  $\alpha$ -degree for  $\alpha = \aleph_{\omega_1}$ .

(日) (日) (日) (日) (日) (日) (日)

# Countable vs uncountable cofinality

### Corollary (V = L)

If there is a minimal  $\aleph_{\omega_1}$ -degree below **0**', then the set

 $\{\nu : \text{There is a minimal } \aleph_{\nu} \text{-degree below } \mathbf{0}'\}$ 

is stationary in  $\omega_1$ . In particular, each such  $\nu$  is countable.

Conjecture:

Assume V = L. There is no minimal  $\alpha$ -degree for  $\alpha = \aleph_{\omega_1}$ .

(日) (日) (日) (日) (日) (日) (日)